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Abstract

Character animations are a crucial part of many interactive applications, from training

simulations to videogames. As these applications have become more sophisticated, the

growing number of character animations required has made standard animation techniques

like key-framing and motion-capture increasingly expensive and time-consuming. Procedu-

rally generating animations appears to offer a solution. This thesis extends and combines

work from several areas of procedural animation to create an end-to-end system for the

automatic generation of character animations for interactive applications. Specifically, our

architecture pairs Spacetime Control, used to automatically generate new physically-valid

clips of character animation, with a data-driven playback technique, used to automatically

generate continuous streams of character motion from these clips in real-time. Our ap-

proach exploits the natural parameterization present in videogames and character motion

to organize and automate the procedural generation of large quantities of character anima-

tion. It also supports rapid-prototyping, easily handles animation design changes, and may

potentially be operated from start to finish by a single user. We demonstrate this archi-

tecture with a working implementation and show results from an example scenario starring

a humanoid character capable of dozens of generated motions including standing, walking,

running, turning and stepping.

Keywords: procedural animation; character animation; videogames; parameter spaces;

physically-based; spacetime control; optimal control; nonlinear optimization; motion graphs
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Chapter 1

Introduction

1.1 Motivation

From their humble beginnings, videogames have seen an immense growth in popularity,

and today are considered a mainstream form of entertainment, rivalling movies and music.

Along with this increased popularity has come an astounding increase in sophistication and

complexity. In the 1970s, popular games like Pong [Alc72] wowed audiences with their

blocky 2D graphics and beeping sound effects. Animated characters were rare. By contrast,

today’s games are set in detailed and expansive 3D worlds, and are populated with hundreds

of life-like characters. Clearly, the bar has been raised.

1.1.1 State of the Art

Assets are the digital building-blocks that make up interactive productions like videogames.

They include characters, props, scenery, animations, sound effects, music, and dialog. To

deliver a high-fidelity experience, modern 3D videogames typically require many thousands

of such assets in very high quality. Among these, the character assets are arguably the

most important in games with characters—especially in those starring a player-controlled

character. In such games, the player-character at a minimum—and possibly many other

characters—are on-screen throughout virtually the entire playtime. This places a great deal

of importance on the assets that determine how these characters sound, look, and move. In

this thesis we concentrate our discussion on the latter of these—the way in which characters

move.

1



CHAPTER 1. INTRODUCTION 2

Modern 3D character animation systems for interactive media like videogames typically

operate by playing back canned sequences or “clips” of character animation data. For in-

stance, a walk-cycle is an example of a single sequence or clip of character animation. Each

animation clip is typically created individually, using one of two techniques: keyframing or

motion-capture.

Keyframing

In the case of the former, animations are created manually by an animator using the methods

offered by an animation software package—chiefly keyframing. Historically, this is based on

traditional hand-drawn animation where a senior animator would draw the main poses or

“keys” and an assistant animator would create the in-between drawings between the key

drawings. In modern 3D computer animation, the process is much the same. An animator

specifies the positions and rotations of a character’s body parts at several essential (key)

moments in time. For instance, to create an animation of a character kicking something,

the animator might first create a keyframe with the character’s legs together, a second

with the character’s right leg rotated back, and finally the last keyframe with his right leg

rotated forwards. These keyframes are then interpolated by the computer to produce all

the “in-between” frames necessary for smooth-looking motion. Creating animations in this

way typically requires artistic ability, some knowledge of human and animal movement,

experience with the animation software package being used, and a great deal of practice

and patience. The benefits are very precise control over the final animation, and complete

freedom to produce any desired motion—including highly stylistic and physically impossible

ones.

Motion Capture

In the case of the latter, the animation data is recorded from the performance of a live

actor—typically a human actor, though animals have also been used. Various systems have

been developed to accomplish this task, but the majority rely on triangulating the actor’s

movement using data received from many carefully calibrated cameras installed around a

small “capture space”. The cameras typically track markers worn by the actor in order to

allow for easier identification of the position and orientation of each of his body parts in

physical space, though markerless systems are now emerging. Motion capture is what drives
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most examples of truly convincing character animation today.

Despite its immense popularity in the videogame industry, and its potential for incredibly

realistic results, motion capture technology has numerous disadvantages:

• Special equipment, software and trained personnel are necessary and can be pro-

hibitively expensive—especially for individuals and small studios.

• Captured animations must generally be processed or cleaned up, often manually, to

make them suitable for use in an interactive production.

• Only motions that can actually be performed inside the capture-space can be recorded.

This generally excludes the possibility of capturing dangerous stunts, uncooperative

animals, imaginary creatures, motions that defy the laws of physics, or motions that

require more room than the capture-space allows for.

• Making substantial changes to a motion-captured animation is difficult. In general

they must be performed and captured again, or painstakingly edited by an animator.

Playback Processing

Regardless of the way in which these sequences or clips of character animation are produced,

they must somehow be played back at run-time. For either of these techniques, keyframing

or motion capture, there are a variety of ways in which the animation data may be stored,

grouped into sequences or clips, and then processed for real-time playback. For instance,

with keyframed skeletal animation, the rotational data at the joints on keyframes could be

saved in a lookup-table per sequence or clip. To play a clip back, the real-time game logic

would decide which clip is necessary and which frame should be used, and then read the

corresponding frame data from the lookup-table. The game’s scene graph would then be

modified to reflect the character’s new pose on this frame—possibly with an interpolation

being performed before, if it was not a keyframe. Additionally, there could be a “skinning”

or enveloping process to deform the character’s rendered mesh to match the skeleton’s pose

in real-time. This is just one of many possible playback processes for keyframing and motion

capture, which typically has as its goals: speed, reuse and making efficient use of the graphics

hardware API. Regardless of the specific technique used, non-procedural animation, such as

keyframing and motion capture, has the character animation data pre-made (i.e. canned)

into sequences which then use one of these playback techniques at run-time. In this thesis,
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we refer to these sequences as animation clips or just“clips”. We also use the term animation

clip to refer to a grouped sequence of animation data, or an animation sequence, even when

it has been procedurally generated.

1.1.2 Problems in Paradise

It was once computational power that limited the scope of interactive productions like video-

games. Commodity processors operated too slowly to render truly convincing 3D graphics,

sound-effects, and music together in real-time. With ever-increasing transistor-densities

and clock-speeds, and with the advent of highly-parallel dedicated graphics processing units

(GPUs) though, that bottleneck has largely been cleared. Indeed, modern videogames may

now render scenes that compete well with the artistic and technical prowess of the film

industry. Instead, the limiting factor today appears to be man-power for creating assets.

The ever-increasing quantity and quality of the character assets required for populating

modern videogames are making the conventional character animation techniques and play-

back processing techniques inadequate. It is our view that conventional character animation

systems for videogames suffer from several major problems:

• They are time-consuming to use, as everything must be done laboriously by program-

mers, and animators or motion-capture actors, all who need extensive training.

• They require extensive up-front planning and foresight. Because of the tight inter-

connectedness of character animations, an iterative design process—adding new ani-

mations as they are realized to be necessary—does not work well. This makes rapid-

prototyping difficult.

• They require complete reconstructions of the entire animation database for seemingly

small changes, (such as the addition of a single requirement like, “the character now

carries a sword in his right hand”). Every animation must be edited manually by an

animator to meet the new requirement, or motion captured again from scratch.

• They are nearly impossible for any single user to operate as they require the expertise

of both programmers and animators. Tight coordination between the two is critical,

but difficult to achieve.
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1.1.3 The Case for Procedural Content

Procedural asset generation appears to offer a solution to many of the problems plaguing

conventional asset creation techniques. Rather than relying on human designers to man-

ually specify the details of every asset, procedural systems take an algorithmic approach,

exploiting the computational power of the computer to produce assets in a more automated

fashion according to rules and parameters. Human designers work with such procedural

systems at a higher level, specifying the rules and parameters that govern asset-creation

rather than the assets themselves.

1.2 Contributions

This thesis presents an architecture for the procedural generation and playback of 3D charac-

ter animations for interactive productions like videogames. We combine work from the field

of Spacetime Control (used to automatically generate new physically-valid clips of character

animation) with work from the field of data-driven playback techniques (used to automat-

ically generate continuous streams of character motion from these clips in real-time). Our

major contribution is a demonstration that this combination of techniques can produce an

effective end-to-end system for the procedural animation of videogame characters. Addi-

tionally, we present a novel parameterized approach to organizing the animation generation

process that is particularly amenable to character animation for videogames. Lastly, our

Spacetime Control formulation considers the creation of cyclic (i.e. looping) animations in

a manner that is more robust than has been done previously.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 performs a literature review of

relevant techniques in the area of procedural character animation. Chapter 3 presents the

design of our character animation system architecture. Chapter 4 describes the details of

our particular implementation of this architecture. Chapter 5 presents an example character

animation scenario, demonstrates the use of our approach in solving it, and discusses the

results. Finally Chapter 6 draws some conclusions, and suggests several areas for future

research.



Chapter 2

Related Work

As with most difficult problems in computer graphics and artificial intelligence, procedural

character animation has been approached from many different perspectives. The follow-

ing sections provide an overview of the approaches that are most relevant to this thesis—

specifically physically-based techniques, data-driven techniques and hybrid techniques that

combine aspects of both.

2.1 Physically-Based Techniques

To animate a physically-embodied character, it could be argued that the most logical ap-

proach is to model and simulate the physics of the character’s body. This approach ensures

that the motions produced are at least physically-plausible; basic laws such as gravitational

attraction and conservation of energy will be obeyed. In general, this lends a degree of

realism—though not necessarily intelligence or grace—to the resulting animation.

Within physically-based techniques, there are two main approaches that differ in the way

physical laws and control are applied: controlled forward-dynamics and Spacetime Control.

2.1.1 Controlled Forward-Dynamics

The forward-dynamics of a character’s body are relatively trivial to simulate, and in fact this

is commonly done in many modern videogames to produce a “ragdoll” effect for unconscious

characters. At each discrete time step t, the rigid-body equations of motion are integrated

to produce a new state for the character at t + 1. Without any means to influence this

6
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simulation, the character will naturally crumple to the floor under the effect of gravity,

appearing lifeless and limp.

Synthesizing motion for conscious characters in this way however is vastly more difficult.

Conscious characters must appear to sense their environment, think about and plan their

actions, and ultimately use their virtual muscles to move in a natural-looking way. This

necessitates the creation of a motion-controller—a “brain” for the character that will com-

plete a sensory-motor feedback loop. The creation of such motion-controllers represents a

difficult problem though, and has been an active area of research for decades.

Many researchers have created motion-controllers manually using standard techniques

from robotics like state-machines, proportional-derivative control, trajectory tracking, in-

verted pendulum models, and inverse kinematics. Controllers for a wide variety of typical

human motions such as walking, running, jumping and crouching etc. have been created

in this way [LvdPE96, CBvdP10]. Controllers for more acrobatic motions such as vault-

ing, tumbling, and diving etc. have also been produced [HWBO95, Woo98]. Despite these

successes, engineering new controllers with these techniques remains difficult and typically

requires careful design and a deep understanding of the desired motions. Additionally,

though these motion-controllers may be robust, the animations they produce tend to be

somewhat stiff and robotic-looking, and there’s often no obvious way of addressing this in

the controller design.

To overcome these problems, some researchers have applied techniques from Artificial

Intelligence to problem of controller design. Many have applied Genetic Algorithms to

evolve Neural Network-based motion-controllers [RM01, Gut04, VM08, CBOP09, AF09].

This biologically-inspired approach promises a high degree of automation, natural-looking

results and real-time controller performance. As Genetic Algorithms and Neural Networks

continue to improve, it may yet become the dominant method in procedural character

animation. For now though, the process of evolving Neural Network controllers generally

falls short of expectations. Fitness functions are notoriously difficult to specify, and even

relatively simple behaviours like walking are slow and difficult to evolve. For instance, the

bipedal walking controllers of Allen and Faloutsos were only stable “for 5-10 meters before

toppling” [AF09]. 1

1Our own attempts to evolve a bipedal walking controller were even less successful. The evolutionary
process eventually discovered a physical glitch that, when properly exploited, would launch characters 20m
through the air. With the discovery of flight, walking quickly became an antiquated mode of transportation.
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As an aside, it is worth noting that in the realm of videogames, controlled forward-

dynamics techniques like these are somewhat unlikely to be adopted in the short-term.

Game designers generally prefer to have a high-degree of reliability and predictability in the

way their characters will move—especially the player-character. With controlled forward-

dynamics techniques, there is always the possibility of a controller failure. Though entirely

realistic, it could make for a rather frustrating game-play experience if the hero occasionally

tripped or stumbled at inopportune moments.

Additionally, despite some success [FPT01], composing multiple controllers together to

create complex motion sequences remains an open and difficult problem.

2.1.2 Spacetime Control

A different approach to applying physical-laws to procedural character animation is known

as Spacetime Control. This approach is alternatively called by the names Spacetime Con-

straints and Optimal Control, but in this thesis we will use the term Spacetime Control.

Originally from the field of robotics, it was adapted and introduced to the computer graphics

community by Witkin and Kass [WK88]. In Spacetime Control, the motion of a character

is specified at a high-level with constraints (for instance, “Avoid all obstacles and never use

more than 200 N of thrust”), and an objective function (for instance, “Maximize the total dis-

tance traveled around the track”). The system uses these specifications to automatically find

motion trajectories that minimize or maximize the objective function whilst satisfying the

constraints. Many researchers have successfully created novel character animations from

scratch using Spacetime Control. For instance, Fang and Pollard created gymnastically-

themed animations for a humanoid character [FP03], and Wampler and Popović created

walk and run-cycle animations for characters with a variety of body-types [WP09]. In this

thesis, we use Spacetime Control to automatically generate animations in parameterized

sets for our characters.

Despite these successes, Spacetime Control is a very computationally expensive tech-

nique, which generally makes it inappropriate for use in interactive applications like video-

games. We work around this limitation by combining Spacetime Control with a data-driven

technique for real-time playback.
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2.2 Data-Driven Techniques

There are many character animation techniques which require the input of pre-made an-

imation clips. We refer to these as data-driven organizational and playback techniques.

Data-driven techniques process a set of input animations to provide new animations not in

the original dataset, or useful methods of playing the animations back.

2.2.1 Move Trees

Move Trees [Kin98, MBC01] (which are, in fact, directed graph structures despite their

name) represent the conventional videogame industry approach to using clips of character

animation data for real-time playback. In these graphs, each node represents a unique

clip of character animation, and the edges between nodes describe which clips may follow

each other. Transitions between clips are generally only allowed at the ends of animation

clips. The animation clips, the structure of the Move Tree itself and the game logic used to

navigate through the Move Tree at run-time are all carefully planned before development

begins and then created manually. This reliance on manual effort makes large Move Trees

expensive to produce, and also somewhat fragile. Adding, changing or removing animation

clips is often difficult because of the tight interconnectedness of the animations.

2.2.2 Motion Graphs

Numerous researchers have investigated the possibility of automatically building directed

graph structures like Move Trees, and automatically searching them to find useful motion

sequences [AF02, LCR∗02, KGP02]. This automatic approach has been termed Motion

Graphs.

Motion Graphs were introduced by Kovar et al. [KGP02], and provide an automatic

method of producing continuous streams of character motion in real-time, given a database

of animation clips as input. The Motion Graph itself is a directed-graph structure where

each edge represents a clip of character animation, and each node serves as a transition

point connecting these clips. Continuous streams of character motion may be produced by

simply walking the graph, playing the clips of animation data encountered along each edge.

Arikan et al. [AFO03] present an approach which provides functionality essentially sim-

ilar to that of a Motion Graph, wherein pre-made animation clips are re-combined as nec-

essary. Their approach however allows for the combination of multiple animation clips
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simultaneously—for instance, “jump and catch while running”. Though reasonably efficient,

the approach does not yet work in real-time, and is thus unsuitable for use in interactive

productions.

Zhao and Safonova [ZS09] create Motion Graphs with better connectivity and smoother

transitions by generating additional clips via the interpolation of existing ones. In this

thesis, we use the key elements of their approach in our Motion Graph implementation.

Lee et al. [LWB∗10] create a more flexible derivative of Motion Graphs which they

call Motion Fields. The technique is capable of creating motions at run-time that are not

explicitly defined in the input animation data.

2.3 Hybrid Techniques

Many techniques, including ours, take a hybrid approach to character animation, combining

aspects of both physically-based and data-driven animation into a single system in order to

overcome perceived limitations of one or the other.

Some researchers have successfully applied Spacetime Control to the editing of pre-made

or motion-captured animations. For instance, transitions have been created between short

segments of motion-captured animation [RGBC96], and motion-captured animation has

been adapted to suit different scenarios [MKHK08, PW99].

Liu et al. [LHP05] incorporate a more sophisticated bio-mechanical model into their

Spacetime Control formulation, accounting for muscle preferences, spring forces at joints

and contact points, and variable joint stiffness. The values for these extra parameters are

automatically estimated from analyzing motion-capture data. Different animations in the

same style as the original can then be synthesized.



Chapter 3

Architecture

This chapter explains our architecture in general, and provides background information on

the techniques used. Chapter 4 provides the details of our particular implementation of this

architecture.

3.1 Overview

Our system takes a hybrid approach to character animation, combining aspects of both

physically-based and data-driven techniques. Specifically, our architecture pairs Spacetime

Control, used to automatically generate new clips of character animation, with a data-driven

playback technique, used to automatically generate continuous streams of character motion

from these clips in real-time. The major benefits of this architecture are:

• It exploits the natural parameterization present in videogames and character motion

to organize and automate the procedural generation of large quantities of character

animation.

• It supports rapid-prototyping and sweeping design changes. Animations can be quickly

added, changed, and removed en masse.

• It may be operated from start to finish by a single user—potentially even a user with

little experience in programming or animation.

Figure 3.1 shows an overview of our architecture. From left to right, the first two blocks

represent the physically-based stages of the architecture. In the first block, the characters’

11
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Parameter Space Animation Clips Real-time Playback

Figure 3.1: Architecture Overview

bodies, their equations of motion, and one or more “Parameter Spaces” are defined by

the user. These Parameter Spaces are sampled at discrete intervals to generate a set of

constraints and objectives that describe each desired animation.

In the second block, two optimization routines—one nested inside the other—are exe-

cuted. The outer optimization performs a derivative-free search for the optimal animation

length and ground contact timings. The inner optimization is a standard Spacetime Control

routine which takes the constraints and objective function for each animation as input, and

generates clips of animation data as output. This nested design is similar to that used by

Wampler and Popović [WP09].

The last two blocks represent the data-driven stage of our architecture. The output of

the optimization routines is simply a (potentially large) database of animation clips. In most

respects, these clips are equivalent to those that could be created during a motion-capture

session, or animated by an artist using a conventional 3D animation software suite.

In the final block of our architecture, the generated animation clips are used for real-time

in-game playback. We avoid specifying any particular playback technique, as we foresee each

application will have its own unique requirements in a character animation system, and a

‘one size fits all’ approach is likely misguided. However, we discuss some techniques that we

think are particularily suited to the automated nature of this architecture.
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3.2 Spacetime Control

Spacetime Control forms the central animation-generating component of our architecture.

It is a powerful method of generating animation, because it requires only a high-level math-

ematical description of a character’s body and its equations of motion, what the character

must do (e.g. “Move from point A to point B in 5 seconds”), and how the character should do

it (e.g. “Minimize the energy expended”). From these descriptions, physically valid motion

is then produced automatically. In the sections that follow, we describe the basic Spacetime

Control technique in more detail. Specific details of our implementation of it are discussed

in Chapter 4.

3.2.1 Constrained Nonlinear Optimization

In Spacetime Control, the generation of physically-valid character motion is phrased as a

constrained nonlinear optimization problem of the form,

minimize
x∈Rn

f(x),

subject to l ≤


x

c(x)


≤ u

(3.1)

where x is a vector of problem variables, f(x) is a nonlinear objective function to be

minimized, c(x) is a vector of nonlinear constraint functions, and l and u are vectors of lower

and upper bounds placed on the variables and constraint functions.

Given a constrained optimization problem in the form of (3.1), there are a wide variety

of algorithms that may be applied to solve it. In general, these algorithms follow one

of two different approaches: Interior-Point methods (an example of which is the program

IPOPT [WB06]) and Sequential Quadratic Programming methods (an example of which

is the program SNOPT [GMS05]). The internal functioning of these algorithms is a large

topic unto itself, and lies outside the scope of this thesis. The interested reader is referred to

Bertsekas [Ber99] for a complete treatment of constrained nonlinear optimization techniques.

For our purposes though, it is enough to know that f(x) and c(x) must typically be twice

continuously differentiable functions, and that either method will return a solution vector

for the problem variables x. The solution vector will be a locally minimal point with regards

to f(x), and will respect the constraints l ≤ x ≤ u and l ≤ c(x) ≤ u. Note that a globally
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minimal point is possible, but not guaranteed.

3.2.2 Physical Constraints

To write our character animation problem in the form required by Equation (3.1), the char-

acter’s body (and the laws of physics that govern its movement) are modeled mathematically,

and written as a set of “physical constraints” in the nonlinear optimization problem. De-

pending on the specifics of the character to be modeled, a wide variety of different modeling

techniques may be appropriate. For instance, characters with articulated skeletons (like

many bipeds and quadrupeds) might be most efficiently modeled as systems of rigid-bodies

connected by powered revolute joints. Other characters that chiefly bend or squish might

be better represented using a soft-body approach. Flying and swimming characters may

need to be physically modeled in a way that accounts for fluid-dynamics. In this thesis,

we are chiefly interested in characters with articulated skeletons and we therefore take the

rigid-body approach.

Characters with articulated skeletons are commonly approximated using systems of rigid-

bodies connected to each other at specific points (i.e. revolute or spherical joints). For

example, see Figure 3.2 which depicts a planar bipedal character, constructed from 5 rigid-

bodies, connected by 4 revolute joints. The effects of muscles can be modelled by allowing

the character to impart torques on the rigid-bodies across each joint. Joint limits can be

modelled by constraining the minimum and maximum angles between the connected bodies.

If contacts between the character and the environment are required, they can be modeled

as temporary joints—active for just the duration of the contact.

Classical mechanics literature [Gol80] provides several different formalisms that can be

used to derive the equations of motion for such a character. Most notable among these are

the Newton-Euler, Lagrangian, Hamiltonian and Kane’s Method formalisms. The choice of

formalism is largely a practical one as they are all essentially equivalent—the laws of physics

are faithfully modelled in each. Depending on the specifics of an implementation though,

one may be more computationally tractable, easier to use, or otherwise more desirable than

another—and we therefore avoid specifying one in our architecture. Section 4.2.2 describes

our use of the Newton-Euler formalism to automatically derive the equations of motion

for characters in our implementation. For a greatly more thorough treatment of classical

mechanics, we refer the interested reader to Goldstein [Gol80].
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Ground Plane

Temporary “Contact” Joint

Revolute Joint

Figure 3.2: A planar biped, constructed from 5 rigid-bodies connected by 4 revolute joints.
A 5th revolute joint provides a temporary contact point with the ground plane.

3.2.3 Animation Specifiers

What we have described until this point is nothing more than an elaborate way to gener-

ate physically-correct motion. But exactly what motion we will get is unknown. Without

additional constraints or an objective function to further specify a desired animation, the

constrained nonlinear optimization routine is likely to return an undesirable motion. We

refer to these types of constraints and objective functions generically as “animation speci-

fiers”.

Similar to the physical constraints discussed above, animation constraints are simply

mathematical inequalities of the form l ≤ x ≤ u or l ≤ c(x) ≤ u, and may therefore

express virtually anything physical involving the character. As a simple example, the po-

sitions and rotations of the character’s body segments, or the relative joint angles between

body segments could be constrained to particular ranges on particular frames. In this way,

a desired animation may be loosely “keyframed” using constraints. The nonlinear optimiza-

tion routine then does the “inbetweening” to construct physically-valid motion around the

specified values.
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The Spacetime approach to animation is really much more powerful than this though

as it allows complex animation specifications that conventional keyframing does not. For

example, it allows writing constraints on forces and torques, as well as on time-derivatives

like the velocity and acceleration of various quantities. Constraints may also be written

using a “statistical” approach. For example, one could constrain a character to maintain an

average rotation of 0◦ over the course of an animation. Additionally, regions of space could

be specified for the character to avoid, or to stay within, creating a virtual obstacle course.

The possibilities are seemingly endless.

Objective functions provide another means by which to specify what motion will be

generated. Rather than specify a hard-constraint, they merely request that a particular

function f(x) be minimized. In Spacetime Control, it is a common practice to minimize the

sum of squared “muscle” torques exerted by the character, but any function of the problem

variables will work. For instance, a character could be given preferences regarding the joint

angles of its limbs. A wide range of limb movement would remain possible if necessary, but

the character would otherwise attempt to keep limbs at their preferred angles. Smooth, fluid

motion could be requested by minimizing the sum of squared joint angle accelerations. Slow,

stiff movements could be requested by minimizing the sum of squared joint angle velocities.

Again, the possibilities are seemingly endless.

It is often useful to specify multiple simultaneous objective functions. However, an astute

reader will note that constrained nonlinear optimization requires just a single objective

function. To handle multiple simultaneous objective functions we take the common step

of writing our final objective as the weighted-sum of all individual objective functions.

Mathematically that is,

f(x) =

i

(fi(x) · wi) (3.2)

where f(x) is the final objective function written to the constrained nonlinear optimization

problem, fi(x) is the ith objective function, and wi is the relative weight of the ith objective

function.

In our experience, we have found that most animation specifications can actually be

written in either form—as constraints or as objective functions—though typically one is

more convenient or more effective than the other.
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3.2.4 A Simple Example

In this section we provide a gentle walk-through of the Spacetime Control technique us-

ing the simplest possible “character”—the Spacetime Particle introduced by Witkin and

Kass [WK88]. An implementation with fully articulated humanoid characters is explored in

Chapter 4.

The Spacetime Particle is simply a point-mass that is free to move in a 2-dimensional

Euclidean space by applying force to itself with a “jet pack”. A gravitational field applies

constant acceleration to the particle in one dimension.

To aid in writing the equations for this example, we define some common terms here

which will appear in our equations:

Term Definition Value used

h time (in seconds) between each frame 0.05 s
fn total number of frames in the animation 21
dn number of dimensions in the Euclidean space 2
m mass (in kilograms) of the particle 2 kg
qf,d particle’s position (in meters from origin) at frame f in dimension d variable
Qf,d particle’s jet force (in Newtons) at frame f in dimension d variable
Qmax maximum allowed jet force (in Newtons) 30 N
gd acceleration (in m/s2) of gravity in dimension d (0,−9.81)

Table 3.1: Some common terms which will appear in our equations.

qf,d and Qf,d are designated as the variables for the constrained nonlinear optimization

routine to determine. The main constraints governing the motion of our character are then

derived as follows. We start with Newton’s second law of motion,

Fnet = m · a (3.3)

where Fnet is the sum of the forces acting on an object, m is the mass of the object,

and a is the acceleration of the object. Ignoring acceleration for now, we can substitute our

terms for Fnet and m into Equation (3.3). In our case, Fnet is the sum of the jet force Qf,d

and the constant force of gravity m · gd acting on the sphere. m is simply the total mass of

the sphere (which we have already defined as m). This substitution yields:

Qf,d +m · gd = m · a (3.4)
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Turning our attention towards the acceleration term now, we note that acceleration is the

second time-derivative of position. We can thus use finite difference formulas to approximate

it:

q̇f,d =
qf,d − qf−1,d

h
(3.5)

q̈f,d =
qf+1,d − 2qf,d + qf−1,d

h2
(3.6)

Substituting these relations into Equation (3.4) yields our final dn(fn − 2) physical con-

straints:

Qf,d +m · gd = m
qf+1,d − 2qf,d + qf−1,d

h2
,

0 < f < fn − 1, 0 ≤ d < dn

(3.7)

With the physical constraints for our character specified, we are simply left with the task

of specifying some animation constraints (what the character must do) and an objective

function (how the character should do it). In this example, we will have the character begin

at the origin (0, 0) with some upwards velocity, and end at another point (4, 4) with the

same upwards velocity. To do this, we write some constraints on the character’s position on

the first two and last two frames of the animation:

q0 = (0, 0)

q1 = (0, 0.5)

qfn−2 = (4, 3.5)

qfn−1 = (4, 4)

(3.8)

Finally, we choose an objective function that will minimize the magnitude of the jet force

used by the character over the course of the animation:

Minimize :
0≤ f < fn
0≤ d < dn

Qf,d
2 (3.9)

When solved with a constrained nonlinear optimization routine, the result is a vector

of qf,d and Qf,d values. The qf,d values represent the movement of the character and are

what we are chiefly interested in. When rendered appropriately, these values produce an
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9.81 m/s2

q0 = (0, 0)

q1 = (0, 0.5)

q19 = (4, 3.5)

q20 = (4, 4)

Figure 3.3: A plot showing the resulting Spacetime Particle motion. The particle’s positions
on the first two and last two frames are fixed by constraints. Jet forces are visualized as
vectors drawn at the particle’s position.

animation similar to the one depicted in Figure 3.3. The Qf,d values represent the jet forces

applied by the character on each frame, and although not strictly necessary for playing the

animation, may nonetheless prove useful. For instance, when the animation is used in-game

a fiery particle effect could be rendered to visualize the jet. The Qf,d values could be used

in order to render this effect with an appropriate direction and magnitude on every frame.

3.2.5 Cyclic Animations

In videogames and other media, the use of cyclic (i.e. looping) animation clips is a common

practice. For example, most animators are familiar with the creation of walk-cycles and

run-cycles for characters. These cyclic animation clips are especially convenient for game

developers because they are relatively short, and yet may be trivially played back to produce

endless streams of motion. For this reason, our architecture considers the creation of cyclic

animation clips as a core feature.

Our architecture supports the creation of what we term perfectly cyclic and transformed
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Figure 3.4: A simple “perfectly cyclic” animation with 3 frames.

cyclic animation clips. We define perfectly cyclic to mean that the character starts and ends

the clip with the same world transform and velocity. This is achieved by simply applying a

Euclidean-definition modulo operator [Bou92] to temporal expressions wherever they appear

in the constraints and objectives. The temporal expression is used as the dividend, and the

total animation length is used as the divisor. For example, using our Spacetime Particle

example from above (see Section 3.2.4), the temporal variable is frame index f , so we could

rewrite the equations of motion (3.7) as,

Qf mod fn,d +m · gd = m
qf+1 mod fn,d − 2qf mod fn,d + qf−1 mod fn,d

h2

0 ≤ f < fn, 0 ≤ d < dn

(3.10)

This has the intended effect of looping the time dimension, causing motion to repeat once

per animation clip length. Note that there are more equations of motion than before, since

we now include equations for the first and last frames. Figure 3.4 shows an example of a

perfectly cyclic animation clip which has been “unrolled” several times (the gray areas in

the figure) to better show its cyclic behavior. It depicts a dot which rises over 3 frames (F0,

F1 and F2), and then quickly returns to its original position as the next cycle begins. The

appropriate expression for the dot’s position on each frame is written under the frame label.

The “perfectly cyclic” approach is generally only useful for producing animations where

the character is stationary overall and may return to its initial state with relative ease. Suit-

able examples include motions like hand-waving, standing idle, and jumping on the spot. An

interesting workaround to this limitation was explored by Wampler and Popović [WP09] who
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created walk-cycles and run-cycles for their animals using a “treadmill” approach. In their

work, characters remain stationary overall while their feet slide backwards at a prescribed

velocity whenever they are in contact with the ground plane. This approach allows the

authors to write their physical constraints in the “perfectly cyclic”manner described above,

and yet allows for the generation of locomotion animations, where it appears the character

is moving. Although convenient for some motions, like constant-velocity locomotion, we

have found this approach lacking on two counts:

• The character’s momentum is essentially neglected. For constant-velocity locomotion,

where a character is simply maintaining his direction and speed, this is largely in-

consequential. However, in animations where a character’s velocity is changing (i.e.

the character is turning, speeding up or slowing down), correct momentum becomes

critical to realistic motion. Imagine a human character making a tight turn while

sprinting. Realistically, this character should “lean into the turn” in order to remain

balanced. However, on a circular treadmill no such lean is required as the character

has negligible momentum.

• Specifying an appropriate speed and direction for the treadmill at every moment be-

comes difficult in complex animation scenarios. For example, in a motion where the

character is required to stand idle and then jump forward 1m, the treadmill’s speed

would need to be accelerated from 0 m/s in the moments preceding the jump, and then

decelerated in the moments after landing. Exactly when and how it should accelerate

to achieve the desired animation may not be readily apparent.

For these reasons we introduce the transformed cyclic approach. This approach allows

the creation of motions where the character starts and ends the clip with different world

transforms and velocities. Critically though, all of the character’s body parts start and end

the clip with the same character-space (i.e. relative) transforms and velocities, and thus the

clip still appears “perfectly cyclic” in character-space.

To do this, we introduce a spatial transform T and its inverse T−1. The transform may

only have translational and rotational components, and it is applied to the character as

a whole in world-space. When writing constraints that reference the temporal variable at

times after the last frame of the animation clip, T is applied to the value. Similarly, when

referencing the temporal variable at times before the first frame of the animation clip, T−1

is applied to the value.



CHAPTER 3. ARCHITECTURE 22

F2

T -1(T -1(q2))

F0

T -1(q0)

F1

T -1(q1)

F2

T -1(q2)

F0

q0

F1

q1

F2

q2

F0

T(q0)

F1

T(q1)

F2

T(q2)

F0

T(T(q0))

Figure 3.5: A simple “transformed cyclic” animation with 3 frames.

For example, using our Spacetime Particle example from above (see Section 3.2.4), the

temporal variable is frame index f , so we could rewrite the equations of motion (3.7) as,

Qf,d +m · gd = m
qf+1,d − 2qf,d + qf−1,d

h2
,

0 < f < fn − 1, 0 ≤ d < dn

Qf,d +m · gd = m
qf+1,d − 2qf,d + T−1(qf−1 mod fn,d)

h2
,

f = 0, 0 ≤ d < dn

Qf,d +m · gd = m
T (qf+1 mod fn,d)− 2qf,d + qf−1,d

h2
,

f = fn − 1, 0 ≤ d < dn

(3.11)

This has the intended effect of looping the time dimension, causing motion to repeat once

per animation clip length, with the exception that T is applied. By writing different trans-

formations T , different animations can be achieved. For instance, a character can be made to

move forward, by writing T as a translation in the desired direction, or to turn by writing T

as a rotation. In each case, the resulting animation will contain a physically-valid motion in

which the character moves to achieve the transform over the course of the animation. In the

trivial case where T is the identity transform, our transformed cyclic approach degenerates

into the perfectly cyclic approach described above.
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Figure 3.5 shows an example of a transformed cyclic animation clip which has been

“unrolled” several times (the gray areas in the figure) to better show its cyclic behavior. It

depicts a dot which rises over 3 frames (F0, F1 and F2), and continues to rise infinitely

as subsequent iterations of the loop are played. The appropriate expression for the dot’s

position on each frame is written under the frame label. In this case, the transformation T

simply translates the dot upward, and is represented with an arrow showing how the dot’s

position is transformed.

When playing back a transformed cyclic animation, the same transform T must be

applied to the character‘s world transform cumulatively each time playback returns to the

beginning of the clip. Doing so completes the illusion that the character is moving overall.

3.3 Optimal Contact-Timings

The standard Spacetime Control approach, as we have described it, requires any contacts

that a character’s body makes with the environment to be explicitly modeled before the

nonlinear optimization can proceed. The exact timing of the contact (i.e. over which time

steps it occurs), the bodies involved (i.e. what part of the character and what part of the

environment contact each other), and the exact nature of the contact (e.g. elastic or inelastic,

and the coefficient of friction etc.) must be specified. All of this is necessary because contacts

represent discontinuities in the dynamics of the system. They must therefore be modeled

explicitly using constraints such that the equations of motion change instantaneously at the

moment a contact begins or ends.

As an example, one might create a jumping animation for a bipedal character by spec-

ifying that both of the character’s feet must be in contact with the ground plane during

the first 20 and last 20 frames of an animation (for an illustration of these contact timings,

see Figure 3.6). Ground reaction forces would be enabled on these frames to push upwards

on the character at the points of contact to achieve this. During the intervening frames,

intersection with the ground plane would be forbidden, and ground reaction forces would

be disabled. The nonlinear optimization routine would therefore produce a jumping motion

to satisfy these constraints.

Manually specifying the appropriate timings for every contact becomes a remarkably

difficult task though—especially when more complex animation scenarios are considered.

Imagine the difficulty in specifying the contact timings for a galloping quadruped or a
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Figure 3.6: An example of contact timings that would produce a jumping motion for a
bipedal character. The character would be airborne between frames 20 and 40.

limping biped. Relatively small differences in contact timings may produce significantly

different motion, which may spell the difference between extremely natural and extremely

unnatural-looking motion.

Rather than leave the contact timings for each Spacetime Control problem to be specified

by the user, our architecture prescribes the use of a derivative-free optimization routine to

determine suitable values automatically. In our own implementation we use the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) [HO96] routine. This optimization is

performed as an outer loop around the Spacetime Control optimization in a manner similar

to that of Wampler and Popović [WP09]. It attempts to find a set of contact timings that

minimize the value of the objective function returned from the inner Spacetime Control

optimization. Additionally, the length of the animation itself may be determined by this

outer optimization if desired.

3.4 Organizing Animation Generation

An important feature of our architecture is the organization of the animation generation

process.

3.4.1 Character Animation with Parameters

Our organizational system stems from acknowledging the often-parameterized nature of

videogames and of character motions themselves. Designers typically create games with
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parameters—it is only natural in such a highly procedural medium. In games with char-

acters, the various ways in which the characters can move (e.g. walking or flying, fast or

slow, healthy or limping) are often central to the game’s mechanics, and are therefore pa-

rameterized and given much consideration by designers. For instance, in the game Space

Invaders [Nis78], the movement speed of the invaders is a parameter that is slowly increased

in order to escalate the difficulty over the course of each level. In a modern remake with

compelling graphics, each change in speed would require a suitable change in the charac-

ter’s animation, making “movement speed” an example of a parameter that affects character

animation in the game. Space Invaders also has several different types of invaders. In

our hypothetical remake, we could claim that the invaders with tentacles need different

animations than the ones with antennae, making “body type” a second parameter affect-

ing character animation. In general, the more parameters that affect the physical state of

a character, the more unique animations are required to properly animate that character

under all circumstances.

It is important to note that for animators this represents a full-factorial design problem—

a so-called combinatorial explosion. That is, for each possible combination of values across

all of the parameters, a unique animation may be required. Mathematically, we could say

that the upper limit on the total number of required animations is,

i0 × i1 × . . .× in (3.12)

where i is the number of possible values that the nth parameter can take.

For a more involved example, let us consider a hypothetical 3D action adventure game.

This game has 3 characters: a knight, an ogre and a dragon. Each of these characters can

move at 3 speeds (walking, jogging and sprinting), turn corners at 7 different rates (90◦/s

left, 60◦/s left, 30◦/s left, 0◦/s, 30◦/s right, 60◦/s right, and 90◦/s right), and carry 1 of

2 different loads (a heavy treasure chest or nothing at all). By Equation (3.12) we can see

that this seemingly simple example with just 4 parameters has necessitated the creation of

an extraordinary 126 unique animations1. Using traditional keyframing or motion-capture

animation techniques, creating this quantity of animation would place an enormous burden

1In truth, even 126 animations would be considered relatively few by modern videogame standards. For
example, the game Assassin’s Creed (Ubisoft, 2007) uses over 12,000 animations for the main character
alone [Gam07].
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on the development team.

In practice, by using some tricks and a little common-sense, it is often possible to get

away with creating fewer animations than Equation (3.12) would dictate (which is why

we say it is the “upper limit” on the total number of required animations). For instance,

if a character has an axis of symmetry, then animations may be mirrored in that axis,

eliminating the need for both “left” and “right” versions of every animation. Additionally,

if several characters share similar bodies and styles of movement, the same animations may

be used for all of them. These same tricks can also be used in our architecture.

3.4.2 Parameter Spaces

Our approach to handling this combinatorial explosion is not to avoid it, but to embrace

it. To this end, we introduce the idea of an n-dimensional “Parameter Space”, as a natural

way of organizing the automatic generation of all the character animations necessary in an

application. The number of dimensions n in the Parameter Space is equal to the number

of parameters that affect character animation in the final application. Every point in the

Parameter Space (defined by an n-length coordinate vector of parameter values) represents

an “animation specification” that could potentially be used to generate an actual animation.

We use the term “animation specification” since there is, as of yet, no concrete motion data

present—the animation exists only abstractly as a vector of parameter values that specify

some properties that the generated animation should satisfy.

Parameters, and their corresponding dimensions in a Parameter Space, may be discrete

or continuous. Discrete parameters may only hold values from a finite set (e.g. carrying one

of: briefcase, backpack, or nothing), while continuous parameters may hold any real value

(e.g. movement speed in m/s).

For an example of a Parameter Space, see Figure 3.7 which illustrates a simple 2-

dimensional Parameter Space parameterized on Forward speed and Crouching. Forward

speed is a continuous parameter measured in m/s, and Crouching is a discrete parameter

with just two possible values: On and Off. The bold horizontal lines represent areas that

are part of the Parameter Space and may be sampled. Every point in this Parameter Space

may be identified uniquely with a coordinate vector of parameter values. For example, the

coordinate vector [2.5m/s, On] identifies a point in the Space that specifies the character

should move forward at 2.5m/s, in a crouched position.
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Figure 3.7: An example of a 2D Parameter Space parameterized on Forward speed (contin-
uous) and Crouching (discrete).

From Parameter Spaces to Constraints and Objectives

A Parameter Space is really just a means to an end. To be useful to us, a Parameter Space

must be sampled, and animations must be generated to satisfy the vector of parameter

values at each sampled point. Parameter values themselves however are not sufficiently

descriptive for constrained nonlinear optimization to proceed. The values may hold some

particular meaning for the designer who specified them, but to the computer they mean

little. For instance, the physical meaning of“Crouching”is indeterminate. We must therefore

provide a way of transforming parameter values into the concrete physical constraints and

objectives that are necessary for constrained nonlinear optimization. To accomplish this,

each dimension in a Parameter Space is associated with a function that produces a set of

zero or more physical constraints and objectives for every possible value in that dimension.

In this way, the exact physical meaning of parameter values like “Crouching” are specified.

The union of these n sets is then taken as the final set of constraints and objectives used in

the constrained nonlinear optimization problem.

By way of example, let us again consider the Parameter Space introduced in Figure 3.7. A

point from this 2-dimensional Parameter Space would be transformed into a set of constraints

and objectives using 2 functions. The first would generate constraints and objectives for the

Forward Speed parameter and could be written as,

ForwardSpeed(p0) = {torsofn−1,0 = torso0,0 + p0 · fn · h} (3.13)

where p0 is the value of the Forward Speed parameter, and torsof,d is the position of the
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character’s torso on frame f in dimension d. We assume that dimension 0 is the appropriate

“forward” dimension. This constraint should therefore force the character to move forward

by a distance that necessitates an average speed of p0 m/s.

The second function would generate constraints and objectives for the Crouching pa-

rameter and could be written as,

Crouching(p1) =

{headf,1 ≤ 1.2 | 0 ≤ f < fn} for p1 = On

∅ for p1 = Off
(3.14)

where p1 is the value of the Crouching parameter, and headf,d is the position of the char-

acter’s head on frame f in dimension d. We assume that dimension 1 is the appropriate

up/down dimension, and that the character is already constrained to stay on or above a

floor plane located at 0 in this dimension. If p1 is On, the returned set of fn constraints will

therefore force the character to crouch in order to keep his head below the 1.2m “ceiling”.

If p0 is Off, no constraints or objectives (i.e. an empty set) are returned, leaving him free to

stand upright.

Finally, the union of these two sets,

ForwardSpeed(p0) ∪ Crouching(p1) (3.15)

is taken as the final set of constraints and objectives used in the constrained nonlinear

optimization problem.

Sampling a Parameter Space

Parameter Spaces must be sampled at discrete intervals in order to generate desired anima-

tion clips. Exactly how this is done is left in the hands of the designer, and there are several

factors to be considered.

If a Parameter Space has any continuous parameters, then of course sampling at discrete

intervals in those dimensions is necessary for our approach to be computationally tractable.

For example, in Figure 3.8 one can see the designer has decided to sample the continuous

Forward speed parameter in increments of 0.5 m/s. Additionally, some regions of a Pa-

rameter Space may specify infeasible or otherwise undesirable animations. In Figure 3.8,

the designer has decided not to sample areas of the space where Forward speed ≥ 2 m/s
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Figure 3.8: An example of how the Parameter Space from Figure 3.7 may be sampled at
discrete intervals to generate desired animations.

and Crouching = On because he only wants the character to move slowly while crouched.

Finally, some regions of a Parameter Space may need to be sampled at higher or lower res-

olution than others. For instance, a region where small changes in parameter values result

in significant changes in motion may need to be sampled at more frequent intervals in order

to adequately capture the details of the region.

Multiple Characters

In the preceding sections we alluded that “character” can be treated as just another pa-

rameter in a Parameter Space. This is an appealing notion since it implies that once an

animation has been specified for one character, an equivalent animation may be generated

for any other character, just by sampling the Parameter Space in the normal fashion. In

truth, treating character as just another parameter is not quite so straightforward, and

requires a little thought.

Difficulties with this approach arise because the constraint and objective generating

functions for the animation-related Parameter Space dimensions must inevitably “know”

something about the character. That is, in order to specify the movement of a character,

these functions must be able to reference the variables qi(t) andQi(t) that control the state of

the character. However, different characters have different variables to match their different

morphologies, and so the problem is revealed. How would one specify animation constraints

like “Crouching” or “Limping” in a way that is completely character-agnostic? Dogs, snakes,

fish and humans would all require different interpretations of these concepts—if they applied

at all.



CHAPTER 3. ARCHITECTURE 30

We offer a partial solution to this problem. For characters that are reasonably similar in

morphology and style of motion, we continue to treat “character” as just another parameter

in a Parameter Space. We abstract small differences in morphology by using a generic

naming convention for character body parts. In this way, “equivalent” body parts, across

all characters in the Parameter Space, are referenced by constraints and objectives in a

consistent manner. For instance, “pelvis”, “tail”and“left hind upper leg”would all be equally

applicable to canine, horse, reptile and rodent characters. Constraints and objectives that

were written for one, could be applied to all. Some care may need to be taken to ensure

that constraints and objectives “scale” properly with the characters. For example, it would

be unrealistic to expect a mouse to achieve the same running speed as a horse. Scaling may

be accomplished through appropriate sampling of the Parameter Space for each character,

or may be built into the units of each dimension. For instance, instead of specifying speed

in an absolute unit like m/s, the dimension could use a relative unit that accounts for the

character’s leg length and muscle strength.

For characters that are significantly different in morphology (or style of motion), we use

a divide and conquer approach. We split the Parameter Space into multiple separate Spaces,

such that the characters within each Space are similar enough in morphology to each other

that the first technique may be used effectively. For instance, all the bipeds in a game might

be placed in one Parameter Space, the quadrupeds into a second and the snakes into a third.

3.5 Animation Clip Database and Real-Time Playback

When all the Parameter Spaces have been sampled, and each point has been converted

into a constrained nonlinear optimization problem and solved, the result is a database of

animation clips—one animation clip for each point sampled from the Parameter Spaces.

In most respects, these clips are equivalent to those that could be created during a

motion-capture session, or animated by an artist using a conventional 3D animation software

suite. The major differences are:

• The clips have been procedurally generated, and can therefore be easily re-generated

en masse to meet changing design requirements.

• The clips were generated procedurally via Spacetime Control, and therefore contain

a significant amount of meta-data about the physical dynamics of the motion. For
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instance, the exact “muscle” torques exerted by the character, ground reaction forces,

and ground contact timings are known explicitly.

• The clips have been sampled from a larger Parameter Space, and are therefore con-

ceptually related to each other in known ways. In essence, each clip is “tagged” with

meta-data about what motion the character is performing. This data can be used at

run-time, to aid in the selection of clips that will achieve a particular result.

• Due to the precise nature of Spacetime Control, the clips can have higher technical

accuracy than is usually possible with motion-capture, and do not require any clean-up

like noise removal, cyclification, foot sliding correction, or penetration correction.

In the final block of our architecture, the generated animation clips are used for real-time

in-game playback. We avoid specifying any particular playback technique, as we foresee

each application will have its own unique requirements in a character animation system,

and a ‘one size fits all’ approach is likely misguided. A wide variety of suitable techniques

are available to choose from though, from straightforward animation clip playback, to more

automated techniques like Motion Graphs [KGP02], Well-Connected Motion Graphs [ZS09],

and Motion Fields [LWB∗10], among many others [LCL06, MP07, SH07, TLP07]. In our

own implementation we explore the use of Well-Connected Motion Graphs.
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Implementation

4.1 Overview

In order to demonstrate our architecture, we have developed a complete implementation of

it, capable of generating a wide variety of 3D character animations. This chapter describes

the design of that implementation, and the particular techniques and technologies used.

Much like the architecture itself, our implementation may be viewed as having two

distinct parts. The first part is responsible for animation generation while the second part

is responsible for real-time playback of the generated animation clips.

4.2 Animation Generation

The animation generating part of our implementation consists chiefly of an object-oriented

library of Python classes which provide an API through which the user may define charac-

ters and parameter spaces, and ultimately generate and export animation clips. To derive

the characters’ equations of motion, and perform other symbolic manipulations, we make

use of the Sympy library [Sym10] for Python. Constrained nonlinear optimization is per-

formed by the program IPOPT [WB06], which is interfaced with our Python library through

AMPL [FGK90] for convenience. The derivative-free “outer” optimization, responsible for

determining contact timings, is performed by the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [HO96] library for Python.

The following sections provide a tour of our Python library. We briefly demonstrate its

usage, and explain some of its internal operation.

32



CHAPTER 4. IMPLEMENTATION 33

In what follows, we use a right-handed coordinate system with the positive y-axis point-

ing up. We use standard gravity of −9.81 m/s2 on the y-axis, and the character stands on

an infinite XZ ground plane. Our Euler-angles use the Tait-Bryan convention with a Y-X-Z

ordering.

4.2.1 Defining Characters

The first step in creating character animations with our system is, of course, to define

the characters. Characters are defined as arbitrary systems of rigid-bodies connected by

powered joints. To allow this, our Python library provides an API through which the user

may instantiate rigid-bodies and joints, and then add these to character objects.

Rigid-Bodies

Since many human and animal body parts are of approximately ellipsoidal shape, our rigid-

bodies are modeled as ellipsoids. A rigid-body is constructed by providing the axis-aligned

length, width and height of the ellipsoid, as well as its total mass. The ellipsoid is constructed

with its geometric center (and thus its center of mass) at the origin in the rigid-body’s local

coordinate system. This convention makes writing the equations of motion for the body

simpler. The constructor also accepts a string which is used as the “generic” name for the

body part. If multiple characters have identically-named rigid-bodies, then constraints and

objectives that are written for one character may generally be used for the others as well (see

Section 3.4.2 for more information). As an example, here we instantiate two rigid-bodies

that make up a bipedal character’s leg:

thigh_left = RigidBody (
Name = "L_leg_upper", Mass = 6.41,
Diameter = [0.16, 0.42, 0.16] )

calf_left = RigidBody (
Name = "L_leg_lower", Mass = 3.13,
Diameter = [0.11, 0.43, 0.11] )

Beyond simply storing the data provided to their constructors, our rigid-bodies are also

responsible for several other tasks. The first is instantiating a vector of Sympy symbols (i.e.

variables) q(t) that will be used to represent the state of the rigid-body in each degree of
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freedom. In our work, we use 6 degrees of freedom (3 translational and 3 rotational), and

therefore q(t) is defined as,

q(t) = [x(t), y(t), z(t), φ(t), θ(t), ψ(t)] (4.1)

where x, y, z are the translational coordinates of the body, φ, θ, ψ are the rotational (i.e.

Euler-angle) coordinates of the body and t is the temporal variable (a discrete frame index,

in our case). These 6 state expressions are eventually treated as variables for the constrained

nonlinear optimization routine to solve for. Rigid-bodies also expose these state variables

individually as tx, ty, tz, rx, ry, and rz respectively, which makes it easier to refer to them

when writing constraints. So for instance, thigh_left.tz(0) and thigh_left.q[2](0)

would both refer to the Z translation of the thigh on frame 0.

Rigid-bodies are also responsible for calculating their principal mass-moments of inertia

Iφ, Iθ and Iψ. In our implementation, rigid-bodies are ellipsoids and therefore their principal

moments of inertia are calculated as,

Iφ = (m/5)(b2 + c2),

Iθ = (m/5)(a2 + c2), (4.2)

Iψ = (m/5)(a2 + b2)

where m is the mass of the rigid-body and a, b, and c are the radii of the ellipsoid in the x,

y and z axes respectively.

Finally, rigid-bodies define a method, get_intersection_constraint(), that returns a

constraint enforcing non-intersection between themselves and a given sphere. This is used

by the character to prevent intersection among all its rigid-bodies. Since our rigid-bodies are

axis-aligned ellipsoids centered at the origin in local coordinates, the necessary constraint

may be written as,

1 ≤ Sx
2

(a+ Sr)2
+

Sy
2

(b+ Sr)2
+

Sz
2

(c+ Sr)2
(4.3)

where Sx, Sy and Sz are the given x, y and z coordinates of the sphere in the local rigid-body

space, and Sr is the given radius of the sphere.
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Joints

Joints are responsible for constraining the movement of rigid-bodies in one or more degrees

of freedom. For example, a spherical (i.e. ball and socket) joint eliminates the 3 translational

degrees of freedom, allowing only rotation about the point of constraint. A revolute (i.e.

hinge) joint eliminates 5 degrees of freedom, allowing rotation on just a single axis. To

enforce their constraints in a physically-correct manner, joints exert constraint forces in

each degree of freedom they constrain.

In our implementation, each joint is required to implement a common interface that

allows us to automatically derive the appropriate equations of motion in a consistent way.

Each joint instantiates a vector of Sympy symbols (i.e. variables) λ(t) that represents the

constraint forces applied by the joint in each degree of freedom it constrains. Additionally

each joint implements 2 methods: get_state_constraints() which returns a list, equal in

length to λ(t), of the constraints imposed by the joint on the involved rigid-bodies’ states

q(t), and get_force_constraints() which returns a list of zero or more constraints on the

constraint forces λ(t) themselves.

Using this interface we implement two joint types: body joints and contact joints, both

of which behave principally like spherical joints (i.e. eliminating translational movement).

Body Joints

Body joints are used to connect two body parts together (for example, a knee joint con-

strains the upper and lower legs). If desired, these joints can also apply “muscle” torque to

allow characters to move, and can enforce rotational limits. They are constructed by pro-

viding references to the 2 rigid-bodies that are constrained, as well as the local-coordinates

on each body where the constraint occurs. Minimum and maximum joint angles on each

axis, and the maximum “muscle” torque that can be exerted by the joint are also provided.

To continue our example from above, here we create a knee joint to connect the upper and

lower leg of our bipedal character. The specified rotation limits prohibit relative rotation

of the two bodies except in the positive direction on the Z axis, much like a human knee

joint.
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joint_knee_left = JointBody (
Name = "L_knee",
BodyA = thigh_left, PointA = [0.0, -0.21, 0.0],
BodyB = calf_left, PointB = [0.0, 0.215, 0.0],
RotationLimits = [[0,0], [0,0], [0, 2.8]],
TorqueLimit = 180 )

Body joints constrain all 6 degrees of freedom and therefore define their constraint force

vector λ(t) as,

λ(t) = [fx(t), fy(t), fz(t), τφ(t), τθ(t), τψ(t)] (4.4)

where fx, fy, fz are the translational forces, τφ, τθ, τψ are the rotational torques.

The get_state_constraints() method returns 6 corresponding constraints,

∀ t : 0 ≤ XBodyA(t)(PointA)x −XBodyB(t)(PointB)x ≤ 0,

∀ t : 0 ≤ XBodyA(t)(PointA)y −XBodyB(t)(PointB)y ≤ 0,

∀ t : 0 ≤ XBodyA(t)(PointA)z −XBodyB(t)(PointB)z ≤ 0, (4.5)

∀ t : φmin ≤ φBodyA(t)− φBodyB(t) ≤ φmax,

∀ t : θmin ≤ θBodyA(t)− θBodyB(t) ≤ θmax,

∀ t : ψmin ≤ ψBodyA(t)− ψBodyB(t) ≤ ψmax

where Xi is a spatial transform that converts coordinates from the local-space of rigid-body

i to world-space. The first three constraints constrain the world-space position of PointA

on BodyA to equal the world-space position of PointB on BodyB. The last three constraints

constrain the relative rotations of BodyA and BodyB to be within the specified joint rotation

limits.

The get_force_constraints() method returns a single constraint, limiting the sum of

squared torques applied by the joint:

∀ t : τφ(t)
2 + τθ(t)

2 + τψ(t)
2 ≤ TorqueLimit2 (4.6)
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Contact Joints

Contact joints are used to define points on a character that may come into contact with the

ground plane over the course of an animation. For example, contact joints might be placed

on a character’s hands and feet, thus allowing him to do cartwheels. Placing contact joints

on his hands and knees would allow him to crawl etc. Unlike body joints, contact joints

have a temporally-varying element to them. Contact joints contribute different constraints

to each time step of the Spacetime Control problem depending on whether or not they are

active in that time step. Before a Spacetime Control problem can be solved, the subset of

time steps in which each contact joint is active must be explicitly defined. This can be done

manually to produce a particular gait, or automatically to minimize an objective function

as discussed in Section 4.2.5. In either case, we separate the definition of a contact joint

from the specification of its contact timings—the character defines the contact joint, and

the animation defines its contact timings.

Contact joints are constructed by providing a reference to the rigid-body which will con-

tact the ground plane, and the point in local-coordinates on that body where the contact

will occur. Additionally, a coefficient of static friction (µ) for the contact is provided.1 This

is used to ensure that the character does not take any action that would cause the contact

to break free of static friction (i.e. exceed traction) and begin sliding. Here we add a contact

joint to the bottom end of our bipedal character’s lower leg:

joint_foot_left = JointContact (
Name = "L_foot",
Body = calf_left, Point = [0.0, -0.215, 0.0],
Friction=0.5 )

Contact joints constrain 4 degrees of freedom and therefore define their constraint force

vector λ(t) as:

λ(t) = [fx(t), fy(t), fz(t), τθ(t)] (4.7)

1In a more robust implementation, the coefficient of friction might be specified with the contact timings,
thus allowing it to vary per contact (or even per time step) if necessary.
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The get_state_constraints() method returns 4 corresponding constraints

∀ t ∈ JointActive : 0 ≤ XBody(t)(Point)x −XBody(t− 1)(Point)x ≤ 0,

∀ t ∈ JointActive : 0 ≤ XBody(t)(Point)y ≤ 0, (4.8)

∀ t ∈ JointActive : 0 ≤ XBody(t)(Point)z −XBody(t− 1)(Point)z ≤ 0,

∀ t ∈ JointActive : 0 ≤ θBody(t)− θBody(t− 1) ≤ 0

where JointActive is the set of time steps for which the contact joint is active. The first and

third constraints constrain the world space position of the contact point at time step t, to

equal the world-space position of the contact point at time step t− 1 on the x and z axes,

thus preventing the Body from sliding while in contact. The second constraint constrains

the world-space position of the contact point on the y-axis to zero (i.e. on the ground plane).

Finally, the fourth constraint constrains the θ rotation of the Body at time t to equal the θ

rotation of the Body at time t−1, thus preventing the Body from twisting while in contact.

This is done so that our point contact behaves more like an area contact, simulating a foot.

The get_force_constraints() method returns 6 constraints:

∀ t ∈ JointActive : 0 ≤ (µfy(t))
2 − fx(t)

2 − fz(t)
2,

∀ t ∈ JointActive : 0 ≤ fy(t),

∀ t /∈ JointActive : 0 ≤ fx(t) ≤ 0, (4.9)

∀ t /∈ JointActive : 0 ≤ fy(t) ≤ 0,

∀ t /∈ JointActive : 0 ≤ fz(t) ≤ 0,

∀ t /∈ JointActive : 0 ≤ τθ(t) ≤ 0

where again, JointActive is the set of time steps for which the contact joint is active. The

first constraint limits the ground reaction forces to be within a “static friction cone”. The

second constraint ensures that the ground reaction forces only push upwards on the character

(never pulling him down). The last 4 constraints simply ensure that when the contact joint

is not active, no forces or torques are applied.
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Characters

With the rigid-bodies and joints defined, character objects may now be created. Each char-

acter is constructed with a name, and references to the rigid-bodies and joints it is comprised

of are added to it. To continue our simple example, we could add the legs, knee joint, and

contact joint we made previously to a new character:

char_knight = Character(Name = "BoldyBraveSirRobin")
char_knight.add_body(thigh_left)
char_knight.add_body(calf_left)
char_knight.add_joint(joint_knee_left)
char_knight.add_joint(joint_foot_left)
# And so on, for the rest of the bodies and joints...

In addition to storing references to the rigid-body and joint objects it is comprised of,

characters are responsible for writing a set of constraints that prevent intersection among

their rigid-bodies (which one will recall, we model as ellipsoids). We accomplish this only

approximately using the get_intersection_constraint() method defined in our rigid-

body class (see Section 4.2.1). Each rigid-body is approximated as a sphere inscribed inside

its actual ellipsoid, and constraints are written to prevent this sphere from intersecting any

of the other ellipsoids on any frame. This simplification makes the necessary constraints

easier to derive at the expense of the occasional self-intersection.

Finally, characters are responsible for deriving their own equations of motion, to which

we dedicate our discussion in the next Section, 4.2.2.

4.2.2 Deriving Equations of Motion

We derive the equations of motion for characters in our implementation using a straight-

forward Newton-Euler approach, with redundant coordinates. As shown above, our char-

acter class stores references to the rigid-body and joint objects it is comprised of. When

a character is used in an animation, the character object is responsible for inspecting its

rigid-bodies and joints, and deriving the appropriate equations of motion for itself.

Ignoring the character’s joints for now, the equations of motion for an individual rigid-

body may be written as follows. To keep these equations simple, we write them with

respect to a coordinate frame whose origin coincides with the rigid-body’s center of mass.

To begin, the rigid-body object is queried for its vector q(t) containing its 6 state expressions
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(see Equation 4.1). The velocities of these terms, q̇(t) are defined using the central finite

difference formula,

q̇(t) =
q(t+ 1)− q(t− 1)

2h
(4.10)

and the accelerations, q̈(t) are defined using the second order central finite difference formula,

q̈(t) =
q(t+ 1)− 2q(t) + q(t− 1)

h2
(4.11)

where h is the duration of a single time step. Additionally, each rigid-body is queried for its

scalar mass m, and its principal mass-moments of inertia, Iφ, Iθ, and Iψ (see Equation 4.2).

With these terms defined, we can write the rigid-body equations of motion (the Newton-

Euler equations) as,

∀ t : fx(t) = m ẍ(t)

∀ t : fy(t) = m (ÿ(t)− 9.81)

∀ t : fz(t) = m z̈(t) (4.12)

∀ t : τφ(t) = Iφ φ̈(t) + (Iψ − Iθ) θ̇(t) ψ̇(t)

∀ t : τθ(t) = Iθ θ̈(t) + (Iφ − Iψ) ψ̇(t) φ̇(t)

∀ t : τψ(t) = Iψ ψ̈(t) + (Iθ − Iφ) φ̇(t) θ̇(t)

where fx, fy, fz, τφ, τθ and τψ are placeholders for the translational forces acting on x, y and

z and the rotational torques acting on φ, θ and ψ respectively. The first three equations are

a straight-forward application of Newton’s second law of motion (see Equation (3.3)). The

last three are Euler’s equations, and contain an extra term to account for the fictitious forces

that arise due to our use of a non-inertial (i.e. rotating) frame of reference. Considering each

rigid-body in isolation as we have been, these placeholder forces and torques are always zero,

and the movement of the rigid-body follows inevitably from its initial conditions. However,

our rigid-bodies are connected by joints, and these joints apply forces and torques to the

bodies in order to constrain their relative motions. To write the necessary expressions for

these forces, it is no-longer sufficient to consider each rigid-body in isolation—we will need

to consider the system as a whole.

To begin, each rigid-body is queried for its state vector q(t), and these are compiled into
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a single large state vector q(t)

q(t) = [ x0(t), y0(t), z0(t), φ0(t), θ0(t), ψ0(t),

x1(t), y1(t), z1(t), φ1(t), θ1(t), ψ1(t), (4.13)

. . . ,

xn(t), yn(t), zn(t), φn(t), θn(t), ψn(t) ]

where n is the number of rigid-bodies in the character.

Additionally, the get_state_constraints() method is called on each of the character’s

joints and the resulting constraint expressions (ignoring their lower and upper bounds) are

compiled into a single constraint expression vector C(t).

The next step is to take the Jacobian of C(t) with respect to q(t). The Jacobian is

simply a large matrix with one row for every constraint expression in C(t), and one column

for every state expression in q(t). Element j,k is the first-order partial derivative of the jth

constraint expression in C(t) with respect to the kth state expression in q(t). The Jacobian

J is therefore written as

J =



∂C0

∂q0

∂C0

∂q1
· · · ∂C0

∂qk

∂C1

∂q0

∂C1

∂q1
· · · ∂C1

∂qk
...

...
. . .

...

∂Cj

∂q0

∂Cj

∂q1
· · · ∂Cj

∂qk


(4.14)

We also compile a large vector of joint constraint forces λ(t), with each joint contributing

its constraint force vector λ(t). Using these vectors we can now write expressions for the

place-holder forces we used above (fx(t), fy(t), fz(t), τφ(t), τθ(t) and τψ(t)):

Fk(t) = JT · λ(t) (4.15)

where Fk(t) is the force applied on the kth degree of freedom (corresponding to the kth

state variable in q(t)), and JT is the transpose of J.

The character now declares its state variables q(t) and force variables λ(t) in the Space-

time Control problem. Finally, it writes its physical constraints (4.12) and joint constraints
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(obtained by calling get_state_constraints() and get_force_constraints() on each of

its joints) to the Spacetime Control problem.

4.2.3 Defining Parameter Spaces

With the characters defined, the user now specifies—using Parameter Spaces—the anima-

tions the system should generate. We take a straight-forward approach to defining and

sampling Parameter Spaces in our implementation. Our Python library provides an API

through which the user may instantiate Parameter Spaces, add dimensions to them, and

then generate and solve the resulting Spacetime Control problems.

Parameter Spaces are initially constructed by simply providing a name for the Space.

For example:

ps_example = ParameterSpace(Name = "Example")

Dimensions are then added to the Parameter Space using its add_dimension() method

which accepts a list of “Specifiers”. In our API, Specifier is an abstract base-class for several

other classes, including Constraint, Objective, Character, ContactTiming, and Animation-

Timing. Each Specifier in the list passed to add_dimension() simultaneously defines a value

in the new dimension to be sampled, and provides the corresponding constraints or objec-

tive functions to be used when sampling it. For example, using the one Specifier that has

already been introduced—Character—we can create a “character dimension” in our Param-

eter Space with 3 possible values:

ps_example.add_dimension( [char_knight, char_princess, char_ogre] )

When sampled, the character object will automatically write its various state variables and

physical constraints, as described in Section 4.2.2, to the Spacetime Control problem. By

adding more dimensions, we can begin to specify the motions these characters should per-

form. Here we add a dimension with just a single value—a Constraint specifier that causes

the character’s torso to begin the animation at the origin on the X and Z axes.

ps_example.add_dimension( [
Constraint(Name = "torsoBegin",

lb = 0, c = torso.tx(0)**2 + torso.tz(0)**2, ub = 0)
] )
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And here we add a third dimension with 49 values generated in a loop. Each value specifies a

particular position for the character’s torso on the X and Z axes at the end of the animation

(Frame 29, we assume in this case).

ps_example.add_dimension( [
Constraint(Name = "torsoEnd",

lb = 0, c = (torso.tx(29) - x)**2 + (torso.tz(29) - z)**2, ub = 0)
for x in range(-3,4) for z in range(-3,4)

] )

We could also add a fourth dimension with a user-specified animation length and frame-

rate,

ps_example.add_dimension( [AnimationTiming(Length = 1.0, FPS = 30)] )

And finally we could add a fifth dimension with user-specified contact timings for each con-

tact joint,

ps_example.add_dimension( [
ContactTiming({

joint_foot_left:[(0.0, 0.5)], #contact starting at 0%, lasting for 50%
joint_foot_right:[(0.5, 0.5)] #contact starting at 50%, lasting for 50%

})
])

To generate all the animations specified by a Parameter Space, the user simply calls the

Space’s generate() method and provides the name of the constrained nonlinear optimiza-

tion solver to use. For example, in this case we use the IPOPT solver:

ps_example.generate(solver = "ipopt")

The generate() method always samples the dimensions of a Parameter Space in a

fully combinatorial fashion, as described by Equation (3.12). This simplifies our system

somewhat (eliminating the need for the user to specify desired and undesired regions of

each Parameter Space), but does occasionally result in infeasible or otherwise undesirable

animations specifications being made. In the infeasible cases, the animations are simply

never solved (the optimization routine returns an error). In the undesirable cases, the
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user may manually delete the resulting animations from the database if he wishes. When

generated, our ps example Parameter Space will produce 3 × 1 × 49 × 1 × 1 = 147 unique

animations.

4.2.4 Inner Optimization with IPOPT and AMPL

When the generate() method of a Parameter Space is called, the Parameter Space is

sampled, and a set of Specifier objects is collected for each point in the Space. Together,

each set of Specifier objects completely describes an animation to be produced, including

the character, constraints, objective functions and timing information.

At this point, we use IPOPT [WB06] and AMPL [FGK90] to solve the resulting Space-

time Control problems. IPOPT is an open source software package that uses an interior

point method for the optimization of large-scale nonlinear problems of the form in (3.1).

It is thus well-suited to our needs. However, IPOPT and similar solvers typically require

some additional information beyond just the variables, constraints and objective function

that form the problem definition. For instance, IPOPT requires information regarding the

problem structure, including the number of non-zeros and the sparsity structure for both

the Jacobian of the constraints, and the Hessian of the Lagrangian function. It also requires

functions for evaluating the gradient of the objective function and the Jacobian of the con-

straints among others. While we could likely compute this information in Python using

Sympy, we find it easier to interface with IPOPT through AMPL.

AMPL is an algebraic modeling language for describing large-scale optimization prob-

lems, and an associated interpreter for translating these problems into the form required

by solvers like IPOPT. Of particular importance to us, AMPL automatically computes the

problem structure and the necessary derivatives required by IPOPT. Additionally, AMPL

attempts to perform some simplification of the problem by eliminating unnecessary variables

and constraints, and the result is often a smaller problem that solves in less time. These fea-

tures make AMPL very attractive to us, and we therefore use it as an intermediary between

our Python library and IPOPT.

To solve our Spacetime Control problem with AMPL and IPOPT, a string for holding

the AMPL problem is created, and each of the Specifier objects mentioned above writes itself

to the problem using the appropriate AMPL syntax. In the case of low-level Specifiers like

Constraints and Objectives, this process is fairly straightforward. Constraints are trivially

written in AMPL format with a minimum of effort. Meanwhile, Objective functions are
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collected and a weighted sum of their values, as per Equation (3.2), is added to the AMPL

problem as the final objective function. Higher-level Specifiers like Character perform their

own processing to ultimately generate low-level Constraint and Objective Specifiers which

are then handled as before. In addition, higher-level Specifiers may also introduce variables.

For instance, our Character Specifier is responsible for writing the vectors of state and force

variables defined by its RigidBody and Joint objects respectively.

With the AMPL problem written, a pipe is opened to the AMPL executable, and the

problem string is transmitted. AMPL performs its preprocessing of the problem, calls the

IPOPT solver executable on it, and finally returns the results to our Python library using

another pipe. If the solver was successful, the results are saved to our database of animation

clips.

In order to speed up the generation of animations, we parallelize this optimization process

at the level of individual Spacetime Control problems. Each Spacetime Control problem is

completely independent of the others, and they may therefore be solved simultaneously by

running multiple AMPL and IPOPT executables. This makes our approach scale well with

the number of processing units available.

4.2.5 Outer Optimization with CMA-ES

As shown briefly in Section 4.2.3, our implementation allows the user to explicitly specify

the animation length and contact timings for animations if desired. Suitable values for these

quantities are not always easy to determine manually though, and so our implementation

provides a facility for determining them automatically using the Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES) [HO96] library for Python. If the user fails to specify

animation length or contact-timings manually, then this facility is automatically invoked

per Spacetime Control problem to determine the unspecified values.

CMA-ES is a derivative-free method for the numerical optimization of nonlinear opti-

mization problems. We use it as an outer optimization loop around our Spacetime Control

optimization. For the sake of this outer optimization we make the assumption that each

contact joint has, at most, one contact per animation. We can therefore express our contact

timings using two variables per contact joint—the starting time of the contact and the du-

ration of the contact—both expressed as a percentage of the total animation length. If the

outer optimization is to determine the animation length, then we also introduce a variable to

express the length of the animation in seconds. We provide an initial starting point for these
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variables that spaces the contacts evenly over the length of a 1 second animation. All the

variables are given lower bounds of 0.0 and upper bounds of 1.0. The variable for animation

length is scaled by a factor of 3 (allowing up to 3 second animations to be produced). We

use values for the CMA-ES parameters of λ = 16, µ = 8, and σ = 1/3. At each iteration

of the CMA-ES optimization, the values of the objective functions returned from our inner

Spacetime Control optimizations are provided as fitnesses. According to the new contact

timing and animation length variables determined by CMA-ES, we produce new Spacetime

Control problems, solve them, and the process is repeated. After 100 iterations, we take the

best solution found as the final animation clip.

4.2.6 Exporting Animation Clips

When all the points in a Parameter Space have been sampled, and the corresponding Space-

time Control problems have been solved, the result is a large database of state and force

vectors that describe the dynamics (i.e. motions and forces) of the characters’ rigid-bodies

through time in each animation.

To be widely useful though, these animations must be exported to a standard skeletal

animation format so they may be handled by conventional animation software and real-time

3D graphics engines. Standard skeletal animation systems represent character motion data

as a hierarchy of transforms or “bones”. In practice there is little difference between the

rigid-bodies in our representation and these bones—both represent parts of a character’s

body for the sake of describing their motions. The chief difference is simply that the bones

in a skeletal animation system are arranged in a hierarchy, whereas the rigid-bodies in our

representation are not.

We therefore provide a simple facility to convert our “flat” rigid-body representation into

a hierarchy on demand. The user specifies a rigid-body that will become the root of the

hierarchy. For the purpose of exporting animation clips, this is usually the rigid-body that

represents the character’s torso or pelvis, though any rigid-body will suffice. A breadth-

first traversal of the character is then performed, starting at the root body, and proceeding

through all the rigid-bodies connected to it by BodyJoints, and then through all the bodies

connected to those bodies, and so forth, until every rigid-body in the character has been

visited. As it proceeds, this traversal yields parent and child pairs, allowing us to express

our character as a hierarchy of rigid-bodies. If desired, the transforms of child bodies are

then expressed relative to the transforms of their parent bodies.
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Using this“automatic rooting”facility, we export our character animations to two skeletal

animation file formats. The first of these, Biovision Hierarchy (BVH), is a standard format

for exchanging motion capture data, and is widely supported by a variety of 3D software

packages. We use the BVH format in conjunction with the open-source 3D software package

Blender [Ble11], to inspect our animation clips once they are generated. The second format

we export to, Ogre3D Skeleton XML, is the native skeletal animation format for the open-

source real-time 3D rendering engine, Ogre3D [Str09]. Our Motion Graph implementation,

provided by the AISandbox (see Section 4.3.1), is based on Ogre3D and relies on it to

handle various low-level tasks like animation loading and playback. We therefore export our

animation clips to its preferred format.

4.3 Real-Time Playback

The real-time playback portion of our implementation consists chiefly of the Motion Graph

technique [KGP02]. Additionally, we augment this with some key features of the Well-

Connected Motion Graph technique [ZS09] for achieving smoother transitions and bet-

ter connectivity within the graph. Motion Graphs are a well-studied data-structure (e.g.

Reitsma and Pollard [RP07] provide an extensive evaluation) and we feel their highly-

automated nature provides a good fit for the purpose of demonstrating our architecture.

4.3.1 Motion Graphs

Motion Graphs were introduced by Kovar et al. [KGP02], and provide an automatic method

of producing continuous streams of character motion in real-time, given a database of an-

imation clips as input. The Motion Graph itself is a directed-graph structure where each

edge represents a clip of character animation, and each node serves as a transition point

connecting these clips (see Figure 4.1). Continuous streams of character motion may be

produced by simply walking the graph, playing the clips of animation data encountered

along each edge.

To construct a Motion Graph, a database of animation clips—typically motion captured,

but in our case generated procedurally via Spacetime Control—is provided as input. Addi-

tionally, the skinned character mesh (i.e. the polygons that are actually rendered and moved

via the character’s bones) is provided. This database is then analyzed to determine, for ev-

ery frame in every clip, its similarity to every other frame in the database. For a number of
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Figure 4.1: A simple Motion Graph. Nodes D and E are not part of the largest Strongly
Connected Component and would be discarded.

reasons, the naive approach of directly comparing the rotations of bones fails to adequately

capture similarity between frames. Instead, the vertices that make up the character’s mesh

are treated as a “Point Cloud” that moves in response to the character’s bones (see Fig-

ure 4.2). The sum of squared distances between corresponding points in this cloud becomes

the primary metric of frame-similarity. Additionally, the similarity metric measures differ-

ences in the velocities of these vertices between frames, while accounting for differences in

the overall translation and rotation of the character between frames. When this analysis

is complete, the result is a 2D similarity-map for every pair of frames in the database (for

example, see Figure 4.3). The locally minimal points on this map are determined, and those

locally minimal points that meet a designer-specified threshold are selected to become tran-

sition points in the Motion Graph. As a final step, to remove dead-ends and other poorly

connected parts of the graph, the largest Strongly Connected Component (SCC) of the Mo-

tion Graph is computed, and any edge that does not connect two nodes in this component

is discarded (again, see Figure 4.1).

At run-time, walks on a Motion Graph may be produced in any number of ways to

generate useful character motion. For instance, Kovar et al. [KGP02] demonstrate the use

of a search technique similar to A* [HNR68] for finding walks that minimize an arbitrary

metric. Specifically they find walks that will follow a user-specified path sketched on the

ground plane. In our implementation, we are content to simply perform random walks of

the graph—thus realizing the “elaborate screen saver” imagined by Kovar et al.

In our implementation we make use of the AISandbox [Cha11] which provides—among

many other things—a working Motion Graph implementation. We split our animation clip

database into sets—one for each character—and build separate Motion Graphs for each of

them.
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Figure 4.2: The vertices that make up a character’s mesh form a “Point Cloud” that is
used to determine similarity between frames. The thick black lines represent the character’s
bones.

(a) (b)

Figure 4.3: Some typical examples of Motion Graph similarity-maps. Darker pixels repre-
sent greater similarity between frames. We use single white pixels in otherwise dark regions
to mark the locally-minimal points.
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4.3.2 Smoother Transitions and Better Connectivity

The standard Motion Graph algorithm, as described above, often suffers from a lack of ei-

ther smooth transitions, or good connectivity, and improving one is usually at the expense

of the other. In our own experiments we found that it was often difficult to build Motion

Graphs that included all of the input motion data, without tolerating some very notice-

able discontinuities during transitions. For example, our run-cycle animation clips contain

substantially different motions with much higher velocities than any of the other animation

clips in our database (e.g. walk-cycles and stepping etc.). The Motion Graph algorithm was

therefore unable to create many smooth transitions between these run-cycles and the other

clips. Sampling our Parameter Spaces at higher resolutions, thus producing greater num-

bers of similar animation clips, often helped. This was especially true for achieving better

connectivity between clips sampled from the same Parameter Space with continuous-valued

parameters. However, it did less to help in the case of clips sampled from different Spaces,

or from Spaces with discrete-valued parameters (e.g. crouching and not crouching) where

sampling at intermediate values was not possible. Additionally the extra time required to

generate so many nearly identical animation clips via Spacetime Control was inefficient.

To improve this situation, we borrow the key feature of the Well-Connected Motion

Graph technique proposed by Zhao and Safonova [ZS09]. Specifically, we interpolate all

motion segments that share the same character and contact configuration in the manner

they describe. This has the desired effect of producing greater numbers of similar frames,

allowing smoother transitions and better connectivity in the Motion Graph. Most impor-

tantly though, it operates across all the animation clips (regardless of the particulars of

their respective Parameter Spaces), and it does so in a much more computationally efficient

manner than Spacetime Control allows.
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Results

5.1 Some Examples

In order to demonstrate our architecture, we have used our implementation of it to produce

several Parameter Spaces of animation for a humanoid character “Chip” with 22 degrees of

freedom (see Figure 5.1). The resulting 36 animation clips were then used to build a Motion

Graph that produces random walks of smooth-looking animation in real-time. All of these

animations were produced with a time step of 0.05 seconds (i.e. 20 frames per second).

The first of our Parameter Spaces, “WalkRunTurn-Cyclic”produces 24 cyclic animations

that cover walking, running and turning-on-the-spot motions. This Space is parameterized

on just two key dimensions: forward speed (in m/s) and turn rate (in rad/s). Figure 5.2

shows the 1 straight and 8 left turn walking animations we sampled from this Space. Fig-

ure 5.3 shows the 1 straight and 3 left turn running animations. For brevity, we neglect

to show the right versions of all these animations, since they are essentially identical, only

mirrored.

One will note that there are only 7 running animations produced (out of the 17 sampled)

as many of the Spacetime Control problems with faster turn rates fail to solve. Running

while making extremely tight turns is a difficult, if not impossible, task for most real-world

animals, and so this result is to be expected. Such failures could even be considered a

benefit as physically implausible animations are removed automatically—designers need not

worry about specifying only physically-plausible motion when designing Parameter Spaces.

If these animations were truly desired though, the constraints in the Spacetime Control

problem could be loosened to allow more solutions to be found. For example, increasing the

51
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Figure 5.1: Chip the mannequin inside our game-engine environment

character’s muscle torque limits and increasing the coefficient of friction between his feet

and the ground plane would likely have the desired effect.

As another example, we created a “WalkSpin-Cyclic” Parameter Space that produces

4 cyclic animations in which the character moves in a straight line while spinning. This

Space is parameterized on 2 key dimensions: forward-speed (0.5 m/s and 1 m/s) and spin

direction (clockwise and counter-clockwise). It is assumed that the character will always

make 1 full rotation over the course of the animation (otherwise the animation cannot be

cyclic). Figure 5.4 shows the 1 m/s, counter-clockwise animation we sampled from this

Space. Since our CMA-ES optimization is limited to assuming at most one contact per

contact joint, and since 4 steps were required for this motion, we specified the contact times

manually.

Finally we created a “Stepping-Cyclic” Parameter Space that produces 8 cyclic anima-

tions in which the character begins in an idle standing pose, takes 2 steps in some direction,

and returns to an idle pose. The character maintains his orientation while doing this. This

Space is parameterized on 2 key dimensions that resemble polar coordinates: the direction

the steps are in (in radians), and the distance traveled from the starting point (in meters).

Figure 5.5 shows five of the animations we sampled from this Space. Again, since our CMA-

ES optimization is limited to assuming at most one contact per contact joint, we specify the
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(a) Frame 0

(b) Frame 9

(c) Frame 20

Figure 5.2: Nine walking animation clips sampled from our “WalkRunTurn-Cyclic” Param-
eter Space (viewed from above). The animation clip on the far right walks in a straight line,
while the others turn at different rates to the left.
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Figure 5.3: Four running animation clips sampled from our “WalkRunTurn-Cyclic” Param-
eter Space. Note how the characters lean into the turn (especially the characters on the
right with the highest turn rates).

contact times manually.

In the above experiments we used a desktop PC with a 4-core Intel 3.4 GHz processor.

We found that it takes the system about 10 minutes to solve a single Spacetime Control

problem. Given 4 cores, this means we can solve about 4 Spacetime Control problems

in parallel in 10 minutes. To perform a full CMA-ES optimization of an animation (for

optimal contact timings and animation length) takes much longer—typically between 24

and 48 hours.

5.2 Handling a Design Change

After creating the 36 example animations described above, we decided it would be interest-

ing to create alternate versions of all these animations in which the character has a limp.

To make this addition was remarkably easy. We added an extra dimension with 2 values

(Healthy and Limping) to each of the 3 Parameter Spaces. The Healthy value has no spec-

ifiers and the Limping value has a constraint that places an upper bound on the ground

reaction force that can be exerted on the character’s right foot. Specifically the force is

limited such that his right foot can only support 0.6 times his full body weight:
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(a) Frame 0

(b) Frame 10

(c) Frame 20

(d) Frame 30

(e) Frame 40

Figure 5.4: A single character animation sampled from our “WalkSpin-Cyclic” Parameter
Space. The character spins counter-clockwise while walking in a straight line to the right.
He performs one complete revolution.
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(a) Frame 0

(b) Frame 23

(c) Frame 36

Figure 5.5: Five character animations sampled from our “Stepping-Cyclic”Parameter Space
(the remaining 3 animations that would complete the circle are not shown for clarity)
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Figure 5.6: Chip performs one of his walk-cycle animations in the Motion Graph.

parameter_space.add_dimension([
None,
Constraint(Name = "rightLegLimp",

c = joint_foot_right.fy(t), ub = char_chip.get_mass() * 9.81 * 0.6)
])

After running the animation generation process again, we had limping versions of all the

animations, (with the exception of the running animations which all failed to solve when

given the limping constraint). In the case of our “WalkRunTurn-Cyclic”Parameter Space in

which the contact times were optimized by CMA-ES, the limping versions have a distinctly

asymmetric pattern of contacts. To our untrained eyes it appears very much like a human

limp. In the other two Spaces, the contact-timings remain fixed, but there is nonetheless

a discernible asymmetry to the motion. While the character has his weight on the right

(injured) leg, he lets his body drop slightly by bending his right knee—presumably to lessen

the ground reaction force on that foot.
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Conclusion

In this thesis we have presented an architecture for automating character animation in inter-

active productions like videogames. We take a hybrid approach, combining the physically-

based technique of Spacetime Control for generating animation clips, with the data-driven

technique of Motion Graphs for real-time interactive playback of them. This architecture

avoids many of the problems we perceive in conventional character animation systems.

Namely, it does not rely on teams of talented animators or trained motion capture per-

sonnel to create each animation individually. Rather, a single animator may specify spaces

of animations to be made using parameters. The system then samples and generates ani-

mations from these spaces en masse. The procedural nature of our system allows for rapid-

prototyping and sweeping design changes. Animations may be quickly added, changed, and

removed en masse without extensive re-work. We created a working implementation of this

architecture and demonstrated its use in a typical videogame animation scenario. Specif-

ically we showed how standing, walking, running, and stepping motions for a humanoid

character could be produced. Additionally we showed how a new design requirement—that

the character also perform limping versions of all these actions—could be easily realized.

The animations produced by our implementation are not of the same quality as those

produced by talented animators or by motion-capture technology. Given our simplistic bio-

mechanical model, we could hardly expect them to be. Nonetheless our results show some

compelling humanoid motion, and given the extremely discerning eye that humans have

for the nuances of humanoid motion, this bodes well for other morphologies. We suspect

that using a more sophisticated bio-mechanical model (e.g. [Yam05]), would result in more

natural-looking motion.

58
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Additionally, we have not shown a particularly great breadth or variety of character

animations. Our examples have all been from the domain of humanoid locomotion. We chose

this domain because it seems most applicable to modern videogames wherein characters

are often humanoid and often required to stand, walk, run and jump etc. These sorts

of motions also require little in the way of domain-specific modeling (e.g. acting skills,

emotions, intricate manipulation of objects etc.) and are therefore well-suited to a coarse

physical optimization. Whether Spacetime Control, in general, will extend well into other

domains of character animation remains to be seen.

6.1 Future Work

6.1.1 Optimal Contact-Timings

In our system we use CMA-ES to optimize the contact-times of our characters’ feet with the

ground plane. To do this, we make the assumption that each foot will contact the ground

either once, or not at all during each animation. Though reasonably efficient, this approach

overly constrains the space of possible solutions, and prevents the creation of certain anima-

tions. For instance, our system will not create skipping (characterized by two contacts per

foot per cycle). We could add additional variables to the CMA-ES optimization to account

for more contacts, but computational efficiency becomes a problem. An interesting direc-

tion for future research would thus be to explore alternative encodings and optimization

algorithms. Using Compositional Pattern Producing Networks (CPPN) [Sta07] produced

by Genetic Algorithms seems like a particularly interesting solution. By exploiting princi-

ples like symmetry and repetition, CPPNs may be able to more easily generate a variety of

useful contact-timings.

Alternatively, some new research by Erez [Ere11] demonstrates an “invertible” contact

model for Spacetime Control. This formulation represents contacts in a fully-continuous

way, allowing for the optimization of contacts as part of the regular Spacetime Control

optimization. The author demonstrates this approach by creating a run-cycle for a humanoid

with 31 degrees of freedom. Using this contact model in our system would make the outer

CMA-ES optimization loop unnecessary, and could enable a greater variety of animations

to be made.
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6.1.2 Self-Intersection

As described in Section 4.2.1, we currently enforce non-intersection between characters’ body

parts only approximately. A sphere inscribed inside each ellipsoid is forbidden to intersect

any of the other ellipsoids on any frame. This is insufficient on two counts. First, it would

be preferable to forbid the ellipsoid itself from intersecting any of the other ellipsoids on any

frame. We did not pursue this, as it was not immediately evident to us how the necessary

constraints could be derived. Several authors offer solutions though [WWK01, AG03]. The

second is a more subtle problem. Occasionally we find an animation clip in which the

state at frame f is feasible, and the state at f + 1 is feasible, but there is no way to

reach f + 1 from f without an intersection occurring during the brief interval between the

two frames. Using smaller time steps would help in this regard, but this quickly becomes

computationally expensive, and it only makes an intersection less likely—not impossible. It

would thus be interesting to explore more definitive approaches. Using swept-volumes to

forbid intersections between frames seems like a likely solution, though the formulation of

such equations in a fully-differentiable way may prove difficult.

6.1.3 Transition Animations

In our implementation, we use the Well-Connected Motion Graph approach [ZS09] for gen-

erating transitions between individual clips of animation. This approach has worked reason-

ably well for us. The interpolated animations are computationally inexpensive to produce,

usually physically-valid (as shown by Safonova and Hodgins [SH05]), and do not contain

foot-sliding errors. However, the approach does suffer from a number of problems. The

interpolated animation clips are not always physically-valid, and they may also contain seri-

ous self-intersection errors (e.g. when interpolating between two clips where the character’s

hand is in front of his torso in one, and behind his torso in the other). Additionally, the

approach tends to create a vast number of animation clips, which greatly slows the creation

and processing of the Motion Graph.

As an alternative, it would be interesting to explore the use of Spacetime Control for

generating transition animations. Rose et al. [RGBC96] describe such an approach. More

recently, Ren et al. [RZS10] describe an approach that we feel is particularly well-suited to

our design. The authors use Spacetime Control to generate short transition animations that

are chosen to minimize the average transition time between frames in the Motion Graph.
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